Development of Surface Micromachining Technologies for Microfluidics and BioMEMS

نویسندگان

  • Murat Okandan
  • Paul Galambos
چکیده

In the last decade, examples of devices manufactured with SUMMiT technology have demonstrated the capabilities of polysilicon surface micromachining [1]. Currently we are working on enhancements to this technology that utilize additional structural layers of silicon nitride to enable Microfluidics and BioMEMS applications. The addition of the silicon nitride layers allows the fabrication of microfluidic flow channels that are transparent (allowing observation of cellular motion) and insulating (allowing the placement of polysilicon electrodes at arbitrary locations in the flow channels). The goal of this technology development effort is to ultimately provide functionality that is not feasible with other microfabrication technologies. The enhancements build on the key features of surface micromachining: manufacturability and compatibility with CMOS processing, which allow us to leverage the investment already made in the microelectronics processing technology. In this paper we will present examples of devices fabricated using this new enhanced surface micromachining technology. These devices include pumps, valves, and a cell manipulator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomedical Applications of Mems

Micromachining and MEMS technologies can be used to produce complex electrical, mechanical, fluidic, thermal, optical, and magnetic structures, devices, and systems on a scale ranging from organs to subcellular organelles. This miniaturization ability has enabled MEMS to be applied in many areas of biology, medicine, and biomedical engineering – a field generally referred to as BioMEMS. The fut...

متن کامل

Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications

MUMPs (Multi-User MEMS Process) based microchannels made of either glass or polysilicon have been successfully designed, fabricated and tested. The fabrication process used timed wet-chemical etching to selectively etch sacrificial materials with the assistance of etch holes. The prototype glass and polysilicon microchannels have cross-section areas of 70 m×4 m and 70 m×2 m, respectively, and b...

متن کامل

Review of polymer MEMS micromachining

The development of polymer micromachining technologies that complement traditional silicon approaches has enabled the broadening of microelectromechanical systems (MEMS) applications. Polymeric materials feature a diverse set of properties not present in traditional microfabrication materials. The investigation and development of these materials have opened the door to alternative and potential...

متن کامل

Micromachining of Parylene C for bioMEMS

Recent advances in the micromachining of poly(p-xylylenes), commercially known as Parylenes, have enabled the development of novel structures and devices for microelectromechanical systems (MEMS). In particular, Parylene C (poly[chloro-p-xylylene]) has been explored extensively for biomedical applications of MEMS given its compatibility with micromachining processes, proven biocompatibility, an...

متن کامل

Surface Micromachining of Polydimethylsiloxane (pdms) for Microfluidic Biomedical Applications

A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O2 plasma treatment to PDMS to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001